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Almost periodically pelturbed two-dimensional systems with rapidly changing phase and slowly varying coefficients are considered. 
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mathematical pendulum acted upon by the sum of two small periodic forces with close frequencies are considered as an example. 
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The resonance modes of non-linear systems which contain fast and slow variables have been investigated 
in many publications. A method of investigating the steady resonance modes in systems with rapidly 
changing phases of a general type was proposed in [1]. A formalism of the method of averaging for 
investigating resonance modes in systems with slowly varying coefficients was developed in [2]. Periodic 
perturbations of two-dimensional systems with rapidly changing phase and slowly varying coefficients 
were studied in [3]!. The conditions for the accurate and averaged equations to be close to one another 
in a finite asymptotically long time interval were indicated. 

1. Consider the following system of differential equations 

where 

x =af(x,q~,¥,x,E), ~ =co(x,x)+eg(x,~p,~,x,e) (1.1) 

V = fl(~), x=~:t 

Here x(t), q)(t), ~tl(t) are scalar functions, x ~ (--oo, ~) is the slow time, e e [0, %) is a small parameter, 
and the dot denotes a derivative with respect to t. The functions f(x, q), ¥, x, E), g(x, cO, ~, x, E) are 
sufficiently smooth with respect to the variables x and ~0 in a certain region D of the x, q) plane, sufficiently 
smooth with respect to the parameter E and almost-periodic functions with respect to each of the variables 

and x uniformly with respect to the remaining variables The function co(x, x) is sufficiently smooth 
with respect to the variable x in a certain interval and an almost-periodic function with respect to x 
uniformly with respect to x. The almost-periodic function f~('0 is separated from zero 

inf I fl('c)[ ;~ 0 (1.2) 
- o o < ' C < ~  

We will call the almost-periodic function f(t) regular if 

t 

S f ( s ) d s = t ( f ) + r ( t )  
0 

where (f) is the mean value of the almost-periodic functionf(t) and r(t) is an almost-periodic function. 
Henceforth we shall assume that f~(~) is a regular almost periodic function. 

System (1.1) is a system with two slow variables x and x and two fast variables 9 and ~. We will 
investigate the case of resonance: an almost-periodic function Xo(X) exists such that 

o(x0(x}, ~) - 0 (1.3) 
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and the following conditions of non-degeneracy of the resonance holds 

inf I tox(Xo(X),x)[ sO (1.4) 
-~<'C<~ 

(f~, f~  . . . .  are the partial derivatives of the funct ionfwith respect to x). 

2. We will investigate the behaviour of the solutions of system (1.1) in IX = ~e-- the neighbourhood 
of the resonance point Xo(X). 

We put 

x = Xo(X) + lu 

and expand the right-hand side of the converted system in powers of Ix. We obtain 

z =Ix[f(xo,~,~,'LO)-xox]+l.t2f~:(Xo,~,¥,'~,O)z+O(ix 3) (2.1) 

~0" = Ixtox (Xo' '~)Z + ~ Ix2toxx (X 0 , "~)Z 2 + Ix2g(xo, tp, W,'C, O(ix 3 0) + ) 

System (2.1) contains only a single fast variable ¥. In system (2.1) we make a substitution, which is 
standard for the averaging method, which enables us to get rid of the fast variable on the right-hand 
side of (2.1) apart from terms of the order of Ix2. We will seek this substitution in the form 

Z ---- ~ + ~,Ul(1], ¥ ,  '~) + Ix2U2('I], V, '~)~ (2.2) 

= 11 + IX2u2(TI, ¥, x) 

where ui(rl, ~t, x) (i = 1, 2), ~2(rl, ¥, x) are defined as the almost-periodic functions in ywi th  zero mean 
from the equations 

~u.  
~(x) ~ = f (xo ,~ ,¥ ,x ,O)-  fo(1],'Q 

~u2 ~ul ~(x)  ~ = f~ (Xo,n, V, x, O) - ~ co~ (Xo, x) - A (rl,'~) 

~(  x) ~ = g(xo,'q, ¥ ,  x, O) - to,: ( Xo, x)ul - go (rl, x) 

where the functionsf0(ri, x),fl(rl, x), g0(rl, x) are the mean values with respect to ~/of the functionsf(x0, 
rl, W, x, 0), f~(x0, a], W, x, 0), g(xo, rl, ~t, x, 0), respectively, and these three functions are regular almost 
periodic functions of V- The substitution (2.2) gives a system which, in a time x, is singularly perturbed 

d~ ~ + IXA (11, x)~ + o(~d) Ix-~x = / 0 ( q , x )  - 

+ ½   o(xo + 
(2.3) 

Suppose an almost periodic function ~(x)  exists such that 

fo(9o(X), x) - dxddx 

Then the degenerate system (2.3) (IX = 0) has the solution 

~=0 ,  n = %(x) 

(2.4) 

(2.5) 
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Linearizing the right-hand side of the degenerate system on the solution (2.5), we obtain the matrix 

II ° Ao(x)= mx(x0,x) 

We will assume that the almost-periodic function 

f°n(%(x)' x) 

m(x) = o~x(Xo, x)fon(%(x), x) 

is sign-constant. Suppose initially (% = const) that 

re(x) > Oo > O, x • (--**, 0") (2.6) 

Then the matrix Ao(x) for all x has real eigenvalues of different signs. In this case, as we know [4], 
in the system 

du 
p. - ~  = Ao(x)u (2.7) 

for sufficiently sm~Jl IX, the space of solutions U(IX) can be represented in the form 

U(Ix) = u+(i.0 + u_(tx) 

For the solutions u+(x, It) • U+ (Ix) the inequality I u+(x, IX) I ~< M+exp[--%IX -1 x (x - s ) ]  I u+(s, g) I 
(--~ < s < _x 1 < oo) is satisfied, while for the solutions u_(x, Ix) • U_(IX) the inequality I u_(x, IX) I ~< 
M_exp[--q,_IX- (x - s)] I u_(s, IX) [(--oo < x < s < ~)  is satisfied. Here M+, M_, % , 7 -  are positive constants 
and I" I is a certain norm in R'.  

It follows from the limits of the solutions of system (2.7) that the solution of this system is unstable 
for sufficiently small Ix if the space X_(IX) of the initial conditions of the solutions from U_(IX) is non-trivial. 

We will denote by B the 2 Banach space of the almost-periodic functions with values in R with the 
usual norm. It follows from the above discussion that the differential operator 

L(Ix)u = du/dx - B-t Ao(x)u 

is continuously invertible in B for sufficiently small Ix and, consequently, the inhomogeneous system 

Ixu = Ao(X)u + f (x ) ,  f ( x )  • B 

has a unique almost-periodic solution 

where 

U(X, IX) = L -l (IX)f('l 0 = ! ~ K(x)s, IX)f(s)d$ 
IX-** 

[ K(x,s ,  IX)[ ___Mexp[-TIX-ll x - s [ ]  ( -o~<x,s<~o)  

while M and T are positive constants. 
We substitute ~ = B(x) - %(x) into system (2.3) and write the system obtained in vector form 

IXw =Ao(X)w+ F(w,W,x, IX) (w=(~,v )) 

The following inequality is obviously satisfied 

(2.8) 

(2.9) 

]F(0, ¥,  x, IX) [ ~ c0~(ix) (2.11) 

where co~(ix) --) 0 as IX --) 0. Further, in view of the smoothness of the vector function F(w, ~, "c, IX) with 

(2.1o) 
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respect to w the following inequality holds 

I F(wI,w,'c, IX)- F(w2,W,x,l.t)l <- co2(p,l.t)l w I - w21 (2.12) 

where I wl I, I w2 1 ~< P, where (02(0, St) ---> 0 as p ---> 0, Ix ~ 0. 
The problem of the almost-periodic solution of system (2.10) is equivalent to the problem of the 

solvability of the following operator equation in space B 

w(x, ix): l l (w, ix )=~ jK(x ,s ,  ix)F(w,s, ix)ds (2.13) 

It follows from inequalities (2.9), (2.11) and (2.12) that numbers a0 and gl exist such that when 0 < 
IX ~< IX1 the operator II(w, IX) on the sphere II w II ~ a0 of the space B satisfies the conditions of the 
principle of contractive mappings, where, when IX ---> 0, the numbers a0(g) ---> 0. Hence, the operator 
equation (2.13) has a Unique solution II w(x, g) in the sphere w II ~< a0 which approaches (0, 0) uniformly 
with respect to x as Ix ---> 0. From inequality (2.6) and the theorem on stability with respect to the first 
approximation we obtain approximately that for sufficiently small St the almost-periodic solution w(x, 
Ix) of system (2.10) is unstable. 

We will formulate the result obtained as it applies to system (1.1). 

Theorem 1. Suppose an almost-periodic function Xo(X) exists, which satisfies equality (1.3) and inequality 
(1.4). Suppose the regular almost-periodic function f~(x) satisfies inequality (1.2). Suppose f(xo, 9, ~, 
% Ix) is the regular almost-periodic function ¥ and an almost-periodic function ~(x)  exists which satisfies 
Eq. (2.4), and inequality (2.6) is satisfied. Then in the ~/e-neighbourhood of the resonance point Xo(X) 
a solution of system (1.1) exists which is almost-periodic with respect to t for sufficiently small E and is 
unstable. 

3. We will first assume that instead of inequality (2.6) the following inequality is satisfied 

m(x) < t~t < 0, x E (--**, **), (or = const) (3.1) 

In this case the eigenvalues of the matrixA0('~) are pure imaginary for all x. 
We will write system (2.3) in the time t 

"q" = Ixm x (.tO, 'C)~ + IxEg 0 (1], "C) + 1 Ix2~xx (.tO, 'C)~ 2 + O(IX 3 ) 
(3.2) 

In system (3.2) we make the substitution 

= ~ ( t ) +  ~ 0 ( x ) +  g3u 3(v,x) 

11 = q00 (x) + gu (t) + g2v 0(~) 

where the almost-periodic function %(x) is the solution of Eq. (2.4) while the almost-periodic functions 
~('c) and a)0(x) are the solutions of the equations 

dq)o = m,,(Xo,X)~o(X)+go(q)o(X),x ) 
dx 

d~° = fon (tPo, 'c~ 0 (x) + fl (tP0, "c)~0 + ( fx (x0, (P0, ~,  x, 0)u I (~0 o , W, x) ) + dx 

+ (f~(xo,lPo,W,X,O)o2(q)o,¥,X) )+( ft (Xo, qOo, ¥, X, O) ) 
respectively. These equations are solvable by virtue of inequalities (1.4) and (2.6). The function u3(~/, x) 
is found from an equation which is similar to the equations defining the functions ui(Tl, ¥, x) (i = I, 2). 
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(The formalism of substitutions of this kind is described in detail in [3].) As a result we obtain the 
following system of equations 

3 
u" = p.,a('r,)v + [,t2[b('r,)u + e(' t)v ~ ] + O ( B  ) 

v = kl.c('t)u + ~t2d('[) v + O(B 3 ) 
(3.3) 

where 

a(x)  = f0n(tp0,x), 

d('[) = go ({P0, z), 

b(,~) = j~ (~00, x), c('c)=o3~.(x~,x) 

1 
e(x) = -~ f0rm (tP0, x) 

In the new notation, condition (3.1) takes the form 

m('t) = a(x)c(x) < "~l  < O, "t ~ (--oo, oo) (3.4) 

while the eigenvalues of the matrix BA0(x) are defined by the formulae 

~q,2 (x, I~) = +itx[-m(x)] tA 

We will reduce system (3.3) to "standard form", i.e. to a form in which the matrix of the first 
approximation is zero, using the substitutions 

u = A cos  X + Bs in  X + g[-m(x)] ~ n('t:)(B cos X - A sin Z) (3.5) 

v = ~$(x)(Bcos X - A sin X) 

where 

1 8'('~) 
n ( x ) = ~ [ b ( x ) + d ( x ) - ' ~ ' ~ l ,  

1 i [-m(s)] ~dz' 
X(X, tx) = ~- 0 

c('r)] ~ 

8(~) = L- a--~,)j 

where we have assmned that [- m(x)] 1/2 is a regular almost-periodic function. Substitution (3.5) converts 
system (3.3) to the following system 

A = B2n(x)A + [.t2(l)l (A, B, X, x) + O(B 3) (3.6) 

B" = I.t2n(x)B + B2~2 (A, B, X, x) + O(B 3 ) 

Here aPx(A , B, X, x), (I~2(a , B, X, x) are functions, periodic in X, with period 2x, which contain terms not 
lower than quadratic in A and B. 

Obviously, the differential operator 

Lz = dz/d'r - M('t)z (M(x) = n ('t)E) 

where E is the identity matrix, is continuously invertible in the space B if the mean value of the almost- 
periodic function n(x) is non-zero and, consequently, the mean of the almost-periodic function a(x)  = 
b(x) + d(x)  is non-zero, and the zeroth solution of the system L z  = 0 is asymptotically stable if (o(x)) 
< 0 and unstable if (o(x)) > 0. In this case the system 

dzld'c = M('c)z + f('c), J~'c) ~ B 

has the unique almost-periodic solution 
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z(17) = ~ G(17,s)f(s)ds 

where 

[ G(17,s)[ ~ Mexp[-y117-sl] ( -~<17,s<0o) ,  M , y > 0  

Writing system (3.6) in vector form (z = (A, B), • = (~1, 02)) in time 17, we obtain that the problem 
of the almost periodic solution of system (3.6) is equivalent to the problem of the solvability in space 
B of the operator equation 

z(17) = 7 G(17,s)[~(z,s,X)+ O(p.)]ds (3.7) 
_ o a  

Further, as in the case of Theorem 1, it can be shown that for sufficiently small Ix, the operator defined 
by the right-hand side of Eq. (3.7) satisfies the conditions of the principle of contractive mappings in 
a certain sphere IIz II ~< al of the space B, where al ---> 0 as Ix ---> 0. Hence, Eq. (3.7) has a unique solution 
in this sphere and, consequently, system (3.6), for sufficiently small Ix, has a unique almost periodic 
solution close to (0, 0). The problem of  the stability of the almost-periodic solution can be set up using 
theorems on stability in the first approximation. 

We will formulate the assertion obtained as it applies to system (1.1). 

Theorem 2. Suppose the almost-periodic functions Xo(X), f~(x) and tPo(X) satisfy the conditions of 
Theorem 1. Suppose inequality (3.4) is satisfied and the functions f(Xo, 90, ¥, x, 0), f~(Xo, 90, ~, x, 0), 
g(x0, ~0, II/, 17, 0),  fx(X0, q)0, ~1/, 17, 0)Ul((P0 , ~t/, 17),fcp(Xo, (P0, ~/, I7, 0)1)2(¢P0 , ~11, ~).lfe(Xo, (P0, ~/, 17, 0),  Ulq(q)0, ~ ,  
17), u1~(%, ¥,  17) are regular almost-periodic functions of ¥, and a[-m(17)] ' ' '  is a regular almost periodic 
function of 17. Suppose, finally, that the mean value of the almost-periodic function a(17) + d(17) is non- 
zero. 

Then, system (1.1) in the e-neighbourhood of the resonance point xo(17 ) for sufficiently small e has 
a unique solution, almost periodic in t, which is asymptotically stable if (a(17)) < 0 and unstable if 

> 0. 

4. We will consider some examples. The equation 

x" +D2 sinx = E['/x' +a I sintot+a2sin(tot+~.At)] (4.1) 

describes forced oscillations and rotations of a mathematical pendulum acted upon by the sum of two small periodic 
forces with close frequencies. Here E is a small parameter and f~2, y, al, a2, to, A are real positive constants. The 
function 

f(t ,  x) = a I sin tot + a 2 sin(tot + eat) 

which is periodic in t with period 2~/0~ and periodic in x = et with period 2~/A, can be written in the form 

f(t,x) = E(x)Sin(tot + 8(x)) 

E(x)=(a21+2ala2cosax+a2) ~, tgS(x)= a2sinA~ 
a I +a 2 cosAz 

(4.2) 

The function E(x) is strictly positive is a 1 ~ a2, which will also be assumed. 
Suppose the perturbed pendulum undergoes oscillatory motion. We will introduce the action-angle variables (I, 

0) into the unperturbed system and we will change from Eq. (4.1) to a system given by the formulae 

i x = 2arcsinksn[2n- K(k)0] = X(I.O) 

x = 2k~cn[21t-lK(k)O] = Y(I,0) 

which contains elliptic Jacobi functions and the complete elliptic integral of the first kind. 
The function k = k(/) is defined by the equation 

(4.3) 

i = 8 g - I ~ [ E ( k ) -  (1 - k 2 )K(k) ] ,  
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where E(k) is the complete elliptic integral of the second kind. Note that for fixed k and 0 = ~D.t/(2K(k)) the first 
of formulae (4.3) is zt solution of the equation of the unperturbed pendulum in the oscillatory case. 

As a result of substitution (4.3) we obtain the following system 

!" = e[ f  (t, z ) -  TY( l,O)]Xo( l,O) (4.4) 

0 " = ~ _  
2K(k) 

e [ f ( t , x ) -  yY(l,0)] X t (1,0) 

We will say that resonance occurs in system (4.4) if 

r (4.5) 
2K(k(1)) s 

where r and s are relatively prime integers. We will denote the solution of Eq. (4.5), if it exists, by Its. Putting 0 = 
to + (r/s)~, system (4.4) takes the form 

1" = ~ t, "¢ ) - l , to + r tot o ,to+ cot (4.6) 

to • m  
r~q 

2K(k) 
r o - I f ( t , Z ) - T Y I i ,  to+sCOtl]Xlll,to+rc.ot 3 

Consequently, I,~ is a point of resonance, in the sense indicated at the beginning of this paper, but I,~ is independent 
ofz.  

We will use Theorems 1 and 2 to investigate the resonance modes. The calculation of the mean values with respect 
to t of the terms on the right-hand side of system (4.6) is based on expansion of the elliptic functions in Fourier 
series. The mean value with respect to t of the first term on the right-hand side of the first equation of system (4.6) 
is only non-zero when r = s and s = 2n+ 1 (n -- 0, 1 . . . .  ). When r = 1 and s = 2n+ 1 this mean value is 

1 
f0 Cto, z) = -~ E(z)an (q)sin[8(z) - (2n + l)to] 

"+)~ ( ~K(k')] k,2 _k2 a n ( q ) = ~ ,  q = e x p  ~ j ,  =1 

The mean value of the second term on the right-hand side of the first equation of system (4.6) is equal to TI. 
Hence, the function %(z) is found from the equation 

s in[8(z)-  (2n + l)to] ffi 2ylr" = A(z) (4.7) 
E(z)an (q) 

Since an(q) ~ 0 as n ~ .o, Eq. (4.7) can only have a solution for a finite number of values of n. If Eq. (4.7) is 
solvable, we have 

8(z)  ( -1)  / arcsin A(z) In 
t0°l(X)= 2n+""~ 2n+l  2 n + l '  I=0,1 ..... 4n+ l  

Calculating the derivative functionf0(to, x) at the point to0(z) we obtain 

fo¢ (too ,z) ffi a(z) = - ( - l ) t  1 E(z)(2n + I)% (q)[I 2 (z)] ~ A 

and, consequently, the function a(z) is positive when I is odd and negative when I is even. Further, a simple calculation 
shows that c(z) < 0 fi3r all z and b(z) + d(z) = -T. 

The following result is obtained from Theorems I and 2. If the resonance point I1, ~+1 corresponds to the solution 
of Eq. (4.5), then for sufficiently small E Eq. (4.1) has 2n + 1 unstable resonance solutions, almost-periodic in t, in 
the e-neighbourhood of the resonance point, and 2n + 1 asymptotically stable resonance solutions, almost-periodic 
in t, in the e-neighbourhood of the resonance point. When e = 0 those solutions become periodic solutions of the 
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unperturbed equation, defined by the formulae 

to In 
l = l  O, 0 = ~ t +  ( l = 0  ..... 4n+I )  

2n+l  2n+ l  

Note that the results do not change if we assume that ~/= ~/(x) is an almost periodic function of x with positive 
mean value. 

Similar results are also obtained in the case of the rotational motions of an unperturbed pendulum, where the 
resonance points are found from the equation 

n ~  1 

kK(k) n 

In the same way one can investigate the more general pendulum equation 

x" +f l2(x)s inx = e[~/(x)x + E(x)sin(v+6(x))] 0.8) 

Here f~(x) is the regular almost periodic function which satisfies condition (1.2), E(x) and ~(x) are defined by (4.2), 
dv/dt = to(x), to(x) is the regular almost-periodic function, which is separate from zero, and ~x) is the almost periodic 
function with positive mean value. 

We will consider solutions of the equation 

X'" + ~,-~2 (x)sin x = 0 

inside a certain subregion of the oscillatory motions for all x, where the boundary of this subregion is independent 
of x. We will change from Eq. (4.8) to a system using substitution (4.3). The resonance points Is(x) are found from 
the equation 

7r, t'~(x) = _r t0(x) 
2KCk(lrs(X)) s 

where r and s are mutually prime integers. Making the substitution 0 = tp + (r/s)v in the corresponding system and 
calculating the mean values of the right-hand sides with respect to v, we obtain that the function f0(¢, x) can only 
be non-zero when r = 1, s = 2n + 1. The equation for determining %(x) takes the form 

sin(8(x)-  (2n + 1)9) = 
2(dir. ,. (x) I dx) + 2~l(x)lr. ,. (x) 

E(x)an(q) 

A calculation of the coefficients a(x), b(x), c(x) and d(x) gives the same results as in the previous case. Hence, 
we can make assertions for Eq. (4.8) similar to those obtained for Eq. (4.1). 

The above scheme can also be used to investigate resonance modes of a pendulum, the point of suspension of 
which oscillates along the vertical or horizontal axis as given by 

~=eE(x)sin(v +~(x)), do I dt=to(x) 

where E(x), ~(x), to(x) are periodic or almost-periodic functions. 
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